Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33372152

RESUMO

Defense of the central nervous system (CNS) against infection must be accomplished without generation of potentially injurious immune cell-mediated or off-target inflammation which could impair key functions. As the CNS is an immune-privileged compartment, inducible innate defense mechanisms endogenous to the CNS likely play an essential role in this regard. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide known to regulate neurodevelopment, emotion, and certain stress responses. While PACAP is known to interact with the immune system, its significance in direct defense of brain or other tissues is not established. Here, we show that our machine-learning classifier can screen for immune activity in neuropeptides, and correctly identified PACAP as an antimicrobial neuropeptide in agreement with previous experimental work. Furthermore, synchrotron X-ray scattering, antimicrobial assays, and mechanistic fingerprinting provided precise insights into how PACAP exerts antimicrobial activities vs. pathogens via multiple and synergistic mechanisms, including dysregulation of membrane integrity and energetics and activation of cell death pathways. Importantly, resident PACAP is selectively induced up to 50-fold in the brain in mouse models of Staphylococcus aureus or Candida albicans infection in vivo, without inducing immune cell infiltration. We show differential PACAP induction even in various tissues outside the CNS, and how these observed patterns of induction are consistent with the antimicrobial efficacy of PACAP measured in conditions simulating specific physiologic contexts of those tissues. Phylogenetic analysis of PACAP revealed close conservation of predicted antimicrobial properties spanning primitive invertebrates to modern mammals. Together, these findings substantiate our hypothesis that PACAP is an ancient neuro-endocrine-immune effector that defends the CNS against infection while minimizing potentially injurious neuroinflammation.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , Sequência de Aminoácidos/genética , Animais , Anti-Infecciosos/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Encéfalo/imunologia , Encéfalo/metabolismo , Morte Celular/efeitos dos fármacos , Simulação por Computador , Bases de Dados Genéticas , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Neuropeptídeos/metabolismo , Filogenia , Transdução de Sinais/fisiologia
2.
Front Immunol ; 11: 1873, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013838

RESUMO

Antimicrobial compounds first arose in prokaryotes by necessity for competitive self-defense. In this light, prokaryotes invented the first host defense peptides. Among the most well-characterized of these peptides are class II bacteriocins, ribosomally-synthesized polypeptides produced chiefly by Gram-positive bacteria. In the current study, a tensor search protocol-the BACIIα algorithm-was created to identify and classify bacteriocin sequences with high fidelity. The BACIIα algorithm integrates a consensus signature sequence, physicochemical and genomic pattern elements within a high-dimensional query tool to select for bacteriocin-like peptides. It accurately retrieved and distinguished virtually all families of known class II bacteriocins, with an 86% specificity. Further, the algorithm retrieved a large set of unforeseen, putative bacteriocin peptide sequences. A recently-developed machine-learning classifier predicted the vast majority of retrieved sequences to induce negative Gaussian curvature in target membranes, a hallmark of antimicrobial activity. Prototypic bacteriocin candidate sequences were synthesized and demonstrated potent antimicrobial efficacy in vitro against a broad spectrum of human pathogens. Therefore, the BACIIα algorithm expands the scope of prokaryotic host defense bacteriocins and enables an innovative bioinformatics discovery strategy. Understanding how prokaryotes have protected themselves against microbial threats over eons of time holds promise to discover novel anti-infective strategies to meet the challenge of modern antibiotic resistance.


Assuntos
Bacteriocinas , Biologia Computacional/métodos , Aprendizado de Máquina , Bacteriocinas/química , Bacteriocinas/classificação , Bacteriocinas/genética
3.
Front Immunol ; 11: 76, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32153560

RESUMO

Recent years have seen an unprecedented rise in the incidence of multidrug-resistant (MDR) Gram-negative bacteria (GNBs) such as Acinetobacter and Klebsiella species. In view of the shortage of novel drugs in the pipeline, alternative strategies to prevent, and treat infections by GNBs are urgently needed. Previously, we have reported that the Candida albicans hypha-regulated protein Hyr1 shares striking three-dimensional structural homology with cell surface proteins of Acinetobacter baumannii. Moreover, active vaccination with rHyr1p-N or passive immunization with anti-Hyr1p polyclonal antibody protects mice from Acinetobacter infection. In the present study, we use molecular modeling to guide design of monoclonal antibodies (mAbs) generated against Hyr1p and show them to bind to priority surface antigens of Acinetobacter and Klebsiella pneumoniae. The anti-Hyr1 mAbs block damage to primary endothelial cells induced by the bacteria and protect mice from lethal pulmonary infections mediated by A. baumannii or K. pneumoniae. Our current studies emphasize the potential of harnessing Hyr1p mAbs as a cross-kingdom immunotherapeutic strategy against MDR GNBs.


Assuntos
Infecções por Acinetobacter/terapia , Anticorpos Antibacterianos/metabolismo , Anticorpos Monoclonais/metabolismo , Candida albicans/imunologia , Proteínas Fúngicas/imunologia , Bactérias Gram-Negativas/imunologia , Infecções por Acinetobacter/imunologia , Acinetobacter baumannii/imunologia , Animais , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Imunoglobulinas , Klebsiella pneumoniae/imunologia , Camundongos , Pneumonia/tratamento farmacológico
4.
Proc Natl Acad Sci U S A ; 116(14): 6944-6953, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30877253

RESUMO

Diversity of α-helical host defense peptides (αHDPs) contributes to immunity against a broad spectrum of pathogens via multiple functions. Thus, resolving common structure-function relationships among αHDPs is inherently difficult, even for artificial-intelligence-based methods that seek multifactorial trends rather than foundational principles. Here, bioinformatic and pattern recognition methods were applied to identify a unifying signature of eukaryotic αHDPs derived from amino acid sequence, biochemical, and three-dimensional properties of known αHDPs. The signature formula contains a helical domain of 12 residues with a mean hydrophobic moment of 0.50 and favoring aliphatic over aromatic hydrophobes in 18-aa windows of peptides or proteins matching its semantic definition. The holistic α-core signature subsumes existing physicochemical properties of αHDPs, and converged strongly with predictions of an independent machine-learning-based classifier recognizing sequences inducing negative Gaussian curvature in target membranes. Queries using the α-core formula identified 93% of all annotated αHDPs in proteomic databases and retrieved all major αHDP families. Synthesis and antimicrobial assays confirmed efficacies of predicted sequences having no previously known antimicrobial activity. The unifying α-core signature establishes a foundational framework for discovering and understanding αHDPs encompassing diverse structural and mechanistic variations, and affords possibilities for deterministic design of antiinfectives.


Assuntos
Células Eucarióticas , Reconhecimento Automatizado de Padrão , Peptídeos/genética , Análise de Sequência de Proteína , Peptídeos/química , Estrutura Secundária de Proteína
5.
PLoS Pathog ; 14(5): e1007056, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29746596

RESUMO

Different pathogens share similar medical settings and rely on similar virulence strategies to cause infections. We have previously applied 3-D computational modeling and bioinformatics to discover novel antigens that target more than one human pathogen. Active and passive immunization with the recombinant N-terminus of Candida albicans Hyr1 (rHyr1p-N) protect mice against lethal candidemia. Here we determine that Hyr1p shares homology with cell surface proteins of the multidrug resistant Gram negative bacterium, Acinetobacter baumannii including hemagglutinin (FhaB) and outer membrane protein A (OmpA). The A. baumannii OmpA binds to C. albicans Hyr1p, leading to a mixed species biofilm. Deletion of HYR1, or blocking of Hyr1p using polyclonal antibodies, significantly reduce A. baumannii binding to C. albicans hyphae. Furthermore, active vaccination with rHyr1p-N or passive immunization with polyclonal antibodies raised against specific peptide motifs of rHyr1p-N markedly improve survival of diabetic or neutropenic mice infected with A. baumannii bacteremia or pneumonia. Antibody raised against one particular peptide of the rHyr1p-N sequence (peptide 5) confers majority of the protection through blocking A. baumannii invasion of host cells and inducing death of the bacterium by a putative iron starvation mechanism. Anti-Hyr1 peptide 5 antibodies also mitigate A. baumannii /C. albicans mixed biofilm formation in vitro. Consistent with our bioinformatic analysis and structural modeling of Hyr1p, anti-Hyr1p peptide 5 antibodies bound to A. baumannii FhaB, OmpA, and an outer membrane siderophore binding protein. Our studies highlight the concept of cross-kingdom vaccine protection against high priority human pathogens such as A. baumannii and C. albicans that share similar ecological niches in immunocompromised patients.


Assuntos
Proteínas Fúngicas/imunologia , Proteínas Fúngicas/farmacologia , Acinetobacter/efeitos dos fármacos , Infecções por Acinetobacter/imunologia , Acinetobacter baumannii/metabolismo , Animais , Antibacterianos/farmacologia , Anticorpos Antibacterianos/imunologia , Bactérias/imunologia , Infecções Bacterianas , Proteínas da Membrana Bacteriana Externa/metabolismo , Vacinas Bacterianas/imunologia , Biofilmes , Candida albicans/metabolismo , Candida albicans/patogenicidade , Proteínas Fúngicas/metabolismo , Imunização Passiva , Imunoterapia , Camundongos , Camundongos Endogâmicos BALB C , Vacinação
6.
Ann N Y Acad Sci ; 1277: 127-38, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23302022

RESUMO

Endogenous host defense peptides (HDPs) are among the most ancient immune mediators, constituting a first line of defense against invading pathogens across the evolutionary continuum. Generally, HDPs are small (<10 kDa), cationic, and amphipathic polypeptides, often broadly classified based on structure. In eukaryotes, major HDP classes include disulfide-stabilized (e.g., defensins), and α-helical or extended (e.g., cathelicidins) peptides. Prokaryote HDPs are generally referred to as bacteriocins, colicins, or lantibiotics, many of which undergo extensive posttranslational modifications. One target for prokaryotic and eukaryotic HDPs is the bacterial cell wall, an essential structural feature conserved among broad classes of bacteria. A primary building block of the cell wall is peptidoglycan, a macromolecular complex that arises through a series of reactions including membrane translocation, extracellular anchoring, and side chain cross-linking. Each of these steps represents a potential target for HDP inhibition, leading to bacteriostatic or bactericidal outcomes. Thus, understanding the relationships between HDPs and cell wall targets may shed light on new peptide antimicrobial agents and strategies to meet the daunting challenge of antibiotic resistance.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Animais , Peptídeos Catiônicos Antimicrobianos/química , Bactérias/química , Bactérias/imunologia , Catelicidinas , Parede Celular/química , Parede Celular/metabolismo , Defensinas , Fungos/química , Fungos/imunologia , Humanos
7.
Annu Rev Pharmacol Toxicol ; 52: 337-60, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22235859

RESUMO

Pathogens resistant to most conventional anti-infectives are a harbinger of the need to discover and develop novel anti-infective agents and strategies. Endogenous host defense peptides (HDPs) have retained evolution-tested efficacy against pathogens that have become refractory to traditional antibiotics. Evidence indicates that HDPs target membrane integrity, bioenergetics, and other essential features of microbes that may be less mutable than conventional antibiotic targets. For these reasons, HDPs have received increasing attention as templates for development of potential anti-infective therapeutics. Unfortunately, advances toward this goal have proven disappointing, in part owing to limited understanding of relevant structure-activity and selective toxicity relationships in vivo, a limited number of reports and overall understanding of HDP pharmacology, and the difficulty of cost-effective production of such peptides on a commodity scale. However, recent molecular insights and technology innovations have led to novel HDP-based and mimetic anti-infective peptide candidates designed to overcome these limitations. Although initial setbacks have presented challenges to therapeutic development, emerging themes continue to highlight the potential of HDP-based anti-infectives as a platform for next-generation therapeutics that will help address the growing threat of multidrug-resistant infections.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacocinética , Peptídeos Catiônicos Antimicrobianos/química , Ensaios Clínicos como Assunto , Desenho de Fármacos , Sinergismo Farmacológico , Imunidade Inata , Fatores Imunológicos/química , Fatores Imunológicos/farmacocinética , Fatores Imunológicos/farmacologia , Receptores Toll-Like/imunologia , Receptores Toll-Like/metabolismo
8.
PLoS One ; 6(11): e26727, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22073187

RESUMO

Structure-mechanism relationships are key determinants of host defense peptide efficacy. These relationships are influenced by anatomic, physiologic and microbiologic contexts. Structure-mechanism correlates were assessed for the synthetic peptide RP-1, modeled on microbicidal domains of platelet kinocidins. Antimicrobial efficacies and mechanisms of action against susceptible ((S)) or resistant ((R)) Salmonella typhimurium (ST), Staphylococcus aureus (SA), and Candida albicans (CA) strain pairs were studied at pH 7.5 and 5.5. Although RP-1 was active against all study organisms, it exhibited greater efficacy against bacteria at pH 7.5, but greater efficacy against CA at pH 5.5. RP-1 de-energized SA and CA, but caused hyperpolarization of ST in both pH conditions. However, RP-1 permeabilized ST(S) and CA strains at both pH, whereas permeabilization was modest for ST(R) or SA strain at either pH. Biochemical analysis, molecular modeling, and FTIR spectroscopy data revealed that RP-1 has indistinguishable net charge and backbone trajectories at pH 5.5 and 7.5. Yet, concordant with organism-specific efficacy, surface plasmon resonance, and FTIR, molecular dynamics revealed modest helical order increases but greater RP-1 avidity and penetration of bacterial than eukaryotic lipid systems, particularly at pH 7.5. The present findings suggest that pH- and target-cell lipid contexts influence selective antimicrobial efficacy and mechanisms of RP-1 action. These findings offer new insights into selective antimicrobial efficacy and context-specificity of antimicrobial peptides in host defense, and support design strategies for potent anti-infective peptides with minimal concomitant cytotoxicity.


Assuntos
Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Anti-Infecciosos/química , Peptídeos Catiônicos Antimicrobianos/química , Candida albicans/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Cinética , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Salmonella typhimurium/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos
9.
Proc Natl Acad Sci U S A ; 106(35): 14972-7, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19706485

RESUMO

Recent discoveries suggest cysteine-stabilized toxins and antimicrobial peptides have structure-activity parallels derived by common ancestry. Here, human antimicrobial peptide hBD-2 and rattlesnake venom-toxin crotamine were compared in phylogeny, 3D structure, target cell specificity, and mechanisms of action. Results indicate a striking degree of structural and phylogenetic congruence. Importantly, these polypeptides also exhibited functional reciprocity: (i) they exerted highly similar antimicrobial pH optima and spectra; (ii) both altered membrane potential consistent with ion channel-perturbing activities; and (iii) both peptides induced phosphatidylserine accessibility in eukaryotic cells. However, the Na(v) channel-inhibitor tetrodotoxin antagonized hBD-2 mechanisms, but not those of crotamine. As crotamine targets eukaryotic ion channels, computational docking was used to compare hBD-2 versus crotamine interactions with prototypic bacterial, fungal, or mammalian Kv channels. Models support direct interactions of each peptide with Kv channels. However, while crotamine localized to occlude Kv channels in eukaryotic but not prokaryotic cells, hBD-2 interacted with prokaryotic and eukaryotic Kv channels but did not occlude either. Together, these results support the hypothesis that antimicrobial and cytotoxic polypeptides have ancestral structure-function homology, but evolved to preferentially target respective microbial versus mammalian ion channels via residue-specific interactions. These insights may accelerate development of anti-infective or therapeutic peptides that selectively target microbial or abnormal host cells.


Assuntos
Venenos de Crotalídeos/química , Crotalus , beta-Defensinas/química , Sequência de Aminoácidos , Animais , Antibacterianos/química , Antibacterianos/toxicidade , Fenômenos Biofísicos , Células Cultivadas , Venenos de Crotalídeos/genética , Venenos de Crotalídeos/farmacologia , Venenos de Crotalídeos/toxicidade , Escherichia coli/efeitos dos fármacos , Humanos , Viabilidade Microbiana/efeitos dos fármacos , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , Alinhamento de Sequência , Staphylococcus aureus/efeitos dos fármacos , beta-Defensinas/genética , beta-Defensinas/farmacologia , beta-Defensinas/toxicidade
10.
Infect Immun ; 76(12): 5706-13, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18824536

RESUMO

Platelets (PLTs) act in antimicrobial host defense by releasing PLT microbicidal proteins (PMPs) or PLT kinocidins (PKs). Receptors mediating staphylocidal efficacy and PMP or PK release versus isogenic PMP-susceptible (ISP479C) and -resistant (ISP479R) Staphylococcus aureus strains were examined in vitro. Isolated PLTs were incubated with ISP479C or ISP479R (PLT/S. aureus ratio range, 1:1 to 10,000:1) in the presence or absence of a panel of PLT inhibitors, including P2X and P2Y receptor antagonists of increasingly narrow specificity, and PLT adhesion receptors (CD41, CD42b, and CD62P). PLT-to-S. aureus exposure ratios of > or = 10:1 yielded significant reductions in the viability of both strains. Results from reversed-phase high-performance liquid chromatography indicated that staphylocidal PLT releasates contained PMPs and PKs. At ratios below 10:1, the PLT antistaphylococcal efficacy relative to the intrinsic S. aureus PMP-susceptible or -resistant phenotype diminished. Apyrase (an agent of ADP degradation), suramin (a general P2 receptor antagonist), pyridoxal 5'-phosphonucleotide derivative (a specific P2X(1) antagonist), and cangrelor (a specific P2Y(12) antagonist) mitigated the PLT staphylocidal response against both strains, correlating with reduced levels of PMP and PK release. Specific inhibition occurred in the presence and absence of homologous plasma. The antagonism of the thromboxane A(2), cyclooxygenase-1/cyclooxygenase-2, or phospholipase C pathway or the hindrance of surface adhesion receptors failed to impede PLT anti-S. aureus responses. These results suggest a multifactorial PLT anti-S. aureus response mechanism involving (i) a PLT-to-S. aureus ratio sufficient for activation; (ii) the ensuing degranulation of PMPs, PKs, ADP, and/or ATP; (iii) the activation of P2X(1)/P2Y(12) receptors on adjacent PLTs; and (iv) the recursive amplification of PMP and PK release from these PLTs.


Assuntos
Plaquetas/imunologia , Quimiocinas/biossíntese , Ativação Plaquetária/imunologia , Receptores Purinérgicos P2/metabolismo , Infecções Estafilocócicas/imunologia , Animais , Plaquetas/metabolismo , Quimiocinas/imunologia , Cromatografia Líquida de Alta Pressão , Coelhos , Receptores Purinérgicos P2X , Receptores Purinérgicos P2Y12 , Staphylococcus aureus/imunologia
11.
Eukaryot Cell ; 7(8): 1318-27, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18515753

RESUMO

Candida albicans is usually a harmless human commensal. Because inflammatory responses are not normally induced by colonization, antimicrobial peptides are likely integral to first-line host defense against invasive candidiasis. Thus, C. albicans must have mechanisms to tolerate or circumvent molecular effectors of innate immunity and thereby colonize human tissues. Prior studies demonstrated that an antimicrobial peptide-resistant strain of C. albicans, 36082(R), is hypervirulent in animal models versus its susceptible counterpart (36082(S)). The current study aimed to identify a genetic basis for antimicrobial peptide resistance in C. albicans. Screening of a C. albicans genomic library identified SSD1 as capable of conferring peptide resistance to a susceptible surrogate, Saccharomyces cerevisiae. Sequencing confirmed that the predicted translation products of 36082(S) and 36082(R) SSD1 genes were identical. However, Northern analyses corroborated that SSD1 is expressed at higher levels in 36082(R) than in 36082(S). In isogenic backgrounds, ssd1Delta/ssd1Delta null mutants were significantly more susceptible to antimicrobial peptides than parental strains but had equivalent susceptibilities to nonpeptide stressors. Moreover, SSD1 complementation of ssd1Delta/ssd1Delta mutants restored parental antimicrobial peptide resistance phenotypes, and overexpression of SSD1 conferred enhanced peptide resistance. Consistent with these in vitro findings, ssd1 null mutants were significantly less virulent in a murine model of disseminated candidiasis than were their parental or complemented strains. Collectively, these results indicate that SSD1 is integral to C. albicans resistance to host defense peptides, a phenotype that appears to enhance the virulence of this organism in vivo.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Candida albicans/genética , Candidíase/microbiologia , Interações Hospedeiro-Patógeno/genética , Imunidade Inata/imunologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Animais , Candida albicans/metabolismo , Candida albicans/patogenicidade , Candidíase/genética , Candidíase/metabolismo , Modelos Animais de Doenças , Regulação Fúngica da Expressão Gênica/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mutação/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Virulência/genética
12.
Biochim Biophys Acta ; 1768(11): 2862-72, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17916323

RESUMO

Kaliocin-1 is a 31-residue peptide derived from human lactoferrin, and with antimicrobial properties that recapitulate those of its 611 amino acid parent holoprotein. As kaliocin-1 is a cysteine-stabilized peptide, it was of interest to determine whether it contained a multidimensional gamma-core signature recently identified as common to virtually all classes of disulfide-stabilized antimicrobial peptides. Importantly, sequence and structural analyses identified an iteration of this multidimensional antimicrobial signature in kaliocin-1. Further, the gamma-core motif was found to be highly conserved in the transferrin family of proteins across the phylogenetic spectrum. Previous studies suggested that the mechanism by which kaliocin-1 exerts anti-candidal efficacy depends on mitochondrial perturbation without cell membrane permeabilization. Interestingly, results of a yeast two-hybrid screening analysis identified an interaction between kaliocin-1 and mitochondrial initiation factor 2 in a Saccharomyces cerevisiae model system. Taken together, these data extend the repertoire of antimicrobial peptides that contain gamma-core motifs, and suggest that the motif is conserved within large native as well as antimicrobial peptide subcomponents of transferrin family proteins. Finally, these results substantiate the hypothesis that antimicrobial activity associated with host defense effector proteins containing a gamma-core motif may correspond to targets common to fungal mitochondria or their bacterial ancestors.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Lactoferrina/química , Lactoferrina/farmacologia , Transferrina/química , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Modelos Moleculares , Modelos Teóricos , Dados de Sequência Molecular , Filogenia , Técnicas do Sistema de Duplo-Híbrido
13.
Nat Rev Microbiol ; 5(9): 727-40, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17703227

RESUMO

It is said that nature is the greatest innovator, yet molecular conservation can be equally powerful. One key requirement for the survival of any host is its ability to defend against infection, predation and competition. Recent discoveries, including the presence of a multidimensional structural signature, have revealed a previously unforeseen structural and functional congruence among host defence effector molecules spanning all kingdoms of life. Antimicrobial peptides, kinocidins, polypeptide venoms and other molecules that were once thought to be distinct in form and function now appear to be members of an ancient family of host defence effectors. These molecules probably descended from archetype predecessors that emerged during the beginning of life on earth. Understanding how nature has sustained these host defence molecules with a potent efficacy in the face of dynamic microbial evolution should provide new opportunities to prevent or treat life-threatening infections.


Assuntos
Evolução Molecular , Peptídeos/imunologia , Peptídeos/metabolismo , Adaptação Fisiológica/imunologia , Animais , Anti-Infecciosos/imunologia , Anti-Infecciosos/metabolismo , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/imunologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Infecções Bacterianas/imunologia , Infecções Bacterianas/metabolismo , Humanos , Modelos Biológicos , Peptídeos/genética
14.
Biochim Biophys Acta ; 1768(3): 598-608, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17208195

RESUMO

Chemokines are small (8-12 kDa) effector proteins that potentiate leukocyte chemonavigation. Beyond this role, certain chemokines have direct antimicrobial activity against human pathogenic organisms; such molecules are termed kinocidins. The current investigation was designed to explore the structure-activity basis for direct microbicidal activity of kinocidins. Amino acid sequence and 3-dimensional analyses demonstrated these molecules to contain iterations of the conserved gamma-core motif found in broad classes of classical antimicrobial peptides. Representative CXC, CC and C cysteine-motif-group kinocidins were tested for antimicrobial activity versus human pathogenic bacteria and fungi. Results demonstrate that these molecules exert direct antimicrobial activity in vitro, including antibacterial activity of native IL-8 and MCP-1, and microbicidal activity of native IL-8. To define molecular determinants governing its antimicrobial activities, the IL-8 gamma-core (IL-8gamma) and alpha-helical (IL-8alpha) motifs were compared to native IL-8 for antimicrobial efficacy in vitro. Microbicidal activity recapitulating that of native IL-8 localized to the autonomous IL-8alpha motif in vitro, and demonstrated durable microbicidal activity in human blood and blood matrices ex vivo. These results offer new insights into the modular architecture, context-related deployment and function, and evolution of host defense molecules containing gamma-core motifs and microbicidal helices associated with antimicrobial activity.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Quimiocinas/farmacologia , Interleucina-8/farmacologia , Peptídeos/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Candida albicans/efeitos dos fármacos , Quimiocinas/química , Quimiocinas/classificação , Quimiocinas/genética , Quimiocinas/metabolismo , Dicroísmo Circular , Contagem de Colônia Microbiana , Sequência Conservada , Cisteína/química , Humanos , Concentração de Íons de Hidrogênio , Interleucina-8/química , Testes de Sensibilidade Microbiana , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/síntese química , Peptídeos/classificação , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Salmonella typhimurium/efeitos dos fármacos , Homologia de Sequência de Aminoácidos , Espectrofotometria , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade
15.
Biochim Biophys Acta ; 1768(3): 609-19, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17217910

RESUMO

Mammalian platelets contain an array of antimicrobial peptides, termed platelet microbicidal proteins (PMPs). Human and rabbit PMPs include known chemokines, such as platelet factor-4 (hPF-4); PMP-1 is the rabbit orthologue of hPF-4. Chemokines that also exert direct antimicrobial activity have been termed kinocidins. A consensus peptide domain library representing mammalian PF-4 family members was analyzed to define structural domains contributing to antimicrobial activity against a panel of human pathogens. Secondary conformations were assessed by circular dichroism spectrometry, and molecular modeling was employed to investigate structural correlates of antimicrobial efficacy. Antimicrobial activity against isogenic peptide-susceptible or -resistant Staphylococcus aureus, Salmonella typhimurium, and Candida albicans strain pairs mapped to the C-terminal hemimer (38-74) and modular domains thereof (49-63 and 60-74). Increasing electrostatic charge and steric bulk were general correlates of efficacy. Structural data corroborated spatial distribution of charge, steric bulk and putative secondary structure with organism-specific efficacy. Microbicidal efficacies of the cPMP antimicrobial hemimer and C-terminal peptide (60-74) were retained in a complex human-blood biomatrix assay. Collectively, these results suggest that modular determinants arising from structural components acting independently and cooperatively govern the antimicrobial functions of PF-4 family kinocidins against specific target pathogens.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Quimiocinas/química , Quimiocinas/farmacologia , Fator Plaquetário 4/química , Fator Plaquetário 4/farmacologia , Sequência de Aminoácidos , Plaquetas/química , Candida albicans/efeitos dos fármacos , Dicroísmo Circular , Contagem de Colônia Microbiana , Relação Dose-Resposta a Droga , Humanos , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Salmonella typhimurium/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Eletricidade Estática , Relação Estrutura-Atividade
16.
Biopolymers ; 84(5): 435-58, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16736494

RESUMO

Antimicrobial peptides are ancient components of the innate immune system and have been isolated from organisms spanning the phylogenetic spectrum. Over an evolutionary time span, these peptides have retained potency, in the face of highly mutable target microorganisms. This fact suggests important coevolutionary influences in the host-pathogen relationship. Despite their diverse origins, the majority of antimicrobial peptides have common biophysical parameters that are likely essential for activity, including small size, cationicity, and amphipathicity. Although more than 900 different antimicrobial peptides have been characterized, most can be grouped as belonging to one of three structural classes: (1) linear, often of alpha-helical propensity; (2) cysteine stabilized, most commonly conforming to beta-sheet structure; and (3) those with one or more predominant amino acid residues, but variable in structure. Interestingly, these biophysical and structural features are retained in ribosomally as well as nonribosomally synthesized peptides. Therefore, it appears that a relatively limited set of physicochemical features is required for antimicrobial peptide efficacy against a broad spectrum of microbial pathogens. During the past several years, a number of themes have emerged within the field of antimicrobial peptide immunobiology. One developing area expands upon known microbicidal mechanisms of antimicrobial peptides to include targets beyond the plasma membrane. Examples include antimicrobial peptide activity involving structures such as extracellular polysaccharide and cell wall components, as well as the identification of an increasing number of intracellular targets. Additional areas of interest include an expanding recognition of antimicrobial peptide multifunctionality, and the identification of large antimicrobial proteins, and antimicrobial peptide or protein fragments derived thereof. The following discussion highlights such recent developments in antimicrobial peptide immunobiology, with an emphasis on the biophysical aspects of host-defense polypeptide action and mechanisms of microbial resistance.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Animais , Bactérias/efeitos dos fármacos , Fenômenos Biofísicos , Biofísica , Resistência Microbiana a Medicamentos , Imunidade , Conformação Proteica
17.
Biochim Biophys Acta ; 1758(9): 1373-86, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16725105

RESUMO

A requisite for efficacious host defense against pathogens and predators has prioritized evolution of effector molecules thereof. A recent multidimensional analysis of physicochemical properties revealed a novel, unifying structural signature among virtually all classes of cysteine-containing antimicrobial peptides. This motif, termed the gamma-core, is seen in host defense peptides from organisms spanning more than 2.6 billion years of evolution. Interestingly, many toxins possess the gamma-core signature, consistent with discoveries of their direct antimicrobial activity. Many microbicidal chemokines (kinocidins) likewise contain iterations of the gamma-core motif, reconciling their antimicrobial efficacy. Importantly, these polypeptide classes have evolved to target and modulate biomembranes in protecting respective hosts against unfavorable interactions with potential pathogens or predators. Extending on this concept, the current report addresses the hypothesis that antimicrobial peptides, kinocidins, and polypeptide toxins are structurally congruent and share a remarkably close phylogenetic relationship, paralleling their roles in host-pathogen relationships. Analyses of their mature amino acid sequences demonstrated that cysteine-stabilized antimicrobial peptides, kinocidins, and toxins share ancient evolutionary relatedness stemming from early precursors of the gamma-core signature. Moreover, comparative 3-D structure analysis revealed recurring iterations of antimicrobial peptide gamma-core motifs within kinocidins and toxins. However, despite such congruence in gamma-core motifs, the kinocidins diverged in overall homology from microbicidal peptides or toxins. These findings are consistent with observations that chemokines are not toxic to mammalian cells, in contrast to many antimicrobial peptides and toxins. Thus, specific functions of these molecular effectors may be governed by specific configurations of structural modules associated with a common gamma-core motif. These concepts are consistent with the hypothesis that the gamma-core is an archetype determinant in polypeptides that target or regulate with biological membranes, with specific iterations optimized to unique or cognate host defense contexts. Quantitative and qualitative data suggest these protein families emerged through both parallel and divergent processes of modular evolution. Taken together, the current and prior findings imply that the gamma-core motif contributes to conserved structures and functions of host defense polypeptides. The presence of this unifying molecular signature in otherwise diverse categories of membrane-active host defense peptides implies an ancient and essential role for such a motif in effector molecules governing host-pathogen relationships.


Assuntos
Peptídeos/química , Filogenia , Sequência de Aminoácidos , Animais , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/classificação , Conformação Proteica , Homologia de Sequência de Aminoácidos
18.
Protein Pept Lett ; 12(1): 49-67, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15638803

RESUMO

Antimicrobial peptides are present in organisms spanning virtually every kingdom, and employ sophisticated mechanisms to exert rapid microbicidal action consistent with their key roles in host defense. Offsetting these mechanisms, some microbial pathogens have evolved complex countermeasures to neutralize exposure to and subvert mechanisms of antimicrobial peptides. The following discussion highlights recent advances that offer greater understanding of the mechanisms of action and resistance of antimicrobial peptides.


Assuntos
Anti-Infecciosos/química , Peptídeos Catiônicos Antimicrobianos/química , Imunidade Inata , Animais , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Membrana Celular/química , Desenho de Fármacos , Resistência Microbiana a Medicamentos
19.
Antimicrob Agents Chemother ; 48(11): 4395-404, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15504869

RESUMO

Mammalian platelets release platelet microbicidal proteins (PMPs) as components of their antimicrobial armamentarium. The present studies defined the structure of PMP-1 and examined its structure-activity relationships. Amino acid sequencing and mass spectroscopy demonstrated that distinct N-terminal polymorphism variants of PMP-1 isolated from nonstimulated or thrombin-stimulated platelets arise from a single PMP-1 propeptide. Sequence data (NH(2)-[S]D(1)DPKE(5)SEGDL(10)HCVCV(15)KTTSL(20) . . .) enabled cloning of PMP-1 from bone marrow and characterization of its full-length cDNA. PMP-1 is translated as a 106-amino-acid precursor and is processed to yield 73-residue (8,053 Da) and 72-residue (7,951-Da) variants. Searches with the BLAST program and sequence alignments demonstrated the homology of PMP-1 to members of the mammalian platelet factor 4 (PF-4) family of proteins. On the basis of phylogenetic relatedness, congruent sequence motifs, and predicted three-dimensional structures, PMP-1 shares the greatest homology with human PF-4 (hPF-4). By integration of its structural and antimicrobial properties, these results establish the identity of PMP-1 as a novel rabbit analogue of the microbicidal chemokine (kinocidin) hPF-4. These findings advance the hypothesis that stimuli in the setting of infection prompt platelets to release PF-4-class or related kinocidins, which have structures consistent with their likely multiple roles that bridge molecular and cellular mechanisms of antimicrobial host defense.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Proteínas Sanguíneas/química , Proteínas Sanguíneas/farmacologia , Sequência de Aminoácidos , Animais , Inteligência Artificial , Fenômenos Químicos , Físico-Química , Clonagem Molecular , DNA Complementar/biossíntese , DNA Complementar/genética , Eletroquímica , Eletroforese em Gel de Poliacrilamida , Humanos , Técnicas In Vitro , Fatores de Transcrição Kruppel-Like , Espectrometria de Massas , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Coelhos , Proteínas Repressoras/química , Proteínas Repressoras/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Trombina/farmacologia
20.
Proc Natl Acad Sci U S A ; 101(19): 7363-8, 2004 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-15118082

RESUMO

Conventional analyses distinguish between antimicrobial peptides by differences in amino acid sequence. Yet structural paradigms common to broader classes of these molecules have not been established. The current analyses examined the potential conservation of structural themes in antimicrobial peptides from evolutionarily diverse organisms. Using proteomics, an antimicrobial peptide signature was discovered to integrate stereospecific sequence patterns and a hallmark three-dimensional motif. This striking multidimensional signature is conserved among disulfide-containing antimicrobial peptides spanning biological kingdoms, and it transcends motifs previously limited to defined peptide subclasses. Experimental data validating this model enabled the identification of previously unrecognized antimicrobial activity in peptides of known identity. The multidimensional signature model provides a unifying structural theme in broad classes of antimicrobial peptides, will facilitate discovery of antimicrobial peptides as yet unknown, and offers insights into the evolution of molecular determinants in these and related host defense effector molecules.


Assuntos
Antibacterianos/química , Peptídeos , Sequência de Aminoácidos , Antibacterianos/imunologia , Dados de Sequência Molecular , Proteoma , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...